GenScript ProBio Plasmid Platform Accelerating Vaccine development against COVID-19

Confidential and Privileged

Milestones: Expert in Plasmid Manufacturing

CONTENTS

(01) V	accines	against (COVID-	19

02) GenScript ProBio Plasmid Platform

Therapies in development against COVID-19

Three main groups of therapies

Vaccine (for prevention)

Training the immune system to recognize and combat pathogens by introducing antigens into the body to trigger an immune response for prevention.

Antibody (for treatment)

Passive immunity by blocking parts of the surface of a virion to render its attack ineffective.

Antiviral agent (for treatment)

Block the viruses from entering the cell or inhibit the replication of viruses in cells.

Subtypes of vaccine:

1 Nucleic acid vaccine (Novel)

Administration of nucleic acid vaccines results in the endogenous generation of viral proteins that mimic antigen produced during natural viral infection.

moderna BIONTECH inovio

2 Subunit vaccine (conventional)

Presents an antigen to the immune system without viral particles, using a specific, isolated protein of the pathogen, and to stimulate long-lasting protective/therapeutic immune responses.

CanSinoBIO

Whole virus vaccine (conventional)

Uses the entire virus particle, fully destroyed, and can be recognized by the immune system and evoke an adaptive immune response.

Worldwide R&D Progress of Nucleic Acid Vaccine

> 6 candidates in Phase I-II trials

	Vaccine candidate	Developer or sponsor	Technology	Phase of trial; participants	Location(s)
mRNA Va	mRNA-1273	Moderna, US National Institute of Allergy and Infectious Diseases	lipid nanoparticle dispersion containing messenger RNA	Phase I (45)	United States
	Ad5-nCoV	CanSino Biologics	recombinant adenovirus type 5 vector	Phase II; 500	Wuhan, China
	Covid-19/aAPC	Shenzhen Geno-Immune Medical Institute	lentiviral vector, pathogen-specific artificial antigen presenting dendritic cells	Phase I; 100	Shenzhen, China
	LV-SMENP-DC	Shenzhen Geno-Immune Medical Institute	lentiviral minigene vaccine, dendritic cells modified with lentiviral vector	Phase I; 100	Shenzhen, China
DNAVE	INO-4800	Inovio Pharmaceuticals, CEPI	DNA plasmid delivered by electroporation	Phase I; 40	United States
	Inactivated COVID-19 vaccine (Vero cells)	Sinovac Biotech, Wuhan Institute of Biological Products	Vero-cell-derived inactivated COVID-19 vaccine	Phase I	Henan, China

Source: WHO, As of April, 2020

Plasmid in DNA Vaccine and mRNA Vaccine

GenScript ProBio supporting plasmid for vaccines

Development Cycle	1 Pilot Production	2) IND	3 Early stage Clinical trials	Late stage Clinical trials	4 Commercialization
GenScript ProBio's Offerings	• ProPlasmid	• Plasmid CMC	• GMPro Plasmid	• GMP plasmid	

CONTENTS

GenScript ProBio Plasmid Platform

Plasmid Platform at GenScript ProBio

Various levels of plasmid available

Plasmid Applications

7

Plasmid as raw materials

Plasmid as DS/DP

• For production of viral vectors: AAV, Lentivirus, Adenovirus, HSV, Retrovirus

- For production of mRNA vaccine: IVT-mRNA
- Complexed Plasmid DNA;
- Minicricle plasmid DNA;
- DNA vaccine

Non-clinical Stage: ProPlasmid Manufacturing

Non-clinical stage Pilot Production Quantity Deliverables Service 1 mg 20 mg IND 100 mg Plasmid 1 ProPlasmid 2. CoA 0.5 g 1 g 5 g **Clinical trials** Non-clinical stage with critical QA control **GenScript Advantages:** Highest QA control in non-clinical stage \checkmark Detailed records and documents ensure traceability \checkmark Animal free, antibiotic free, reduce the harm to animal and human body. Commercialization \checkmark High Density Fermentation \rightarrow High Yield: 600-800 mg/L. \checkmark

Early Stage Clinical: GMPro Plasmid Manufacturing

Early Stage Clinical

Service	Quantity	Deliverables
	1 mg	
	5mg	
	10mg	
	50mg	1. COA
GMPro plasmid	100 mg	 Plasmid TSE/BSE statement
	0.5 g	4. Mfg. summary report
	1 g	
	2 g	
	5 g	
Applicable for plasm control	nid manufacturing	in clinical phase I with full QA

- Animal free, antibiotic free, reduce the harm to animal and human body.
- ✓ High Density Fermentation \rightarrow High Yield: 600-800 mg/L.
- ✓ Manufacturing process compliant to GMP, **full record** guarantee traceability.

Clinical and Commercial: GMP Plasmid Manufacturing

Pilot Production	Clinical and commercial supply		
	Facility	GMP facility in US	
IND		Starting from WCB	
	Manufacturing	High density fermentation	
		Multiple-step purification	
Clinical trials	QC	11 assays	
	QA	Full QA	
	Application	Clinical phase and commercial supply	
Commercialization			

Experience in manufacturing

Accumulated experience in manufacturing pDNA as DS and DP for late-phase clinical trials

Regulatory Applications

- 17 INDs Filed
- 4 Master Files
- Orphan (#4), Fast Track (#2), QIDP⁴) (#1)

GMP Inspections

- CaFDB¹⁾ for commercial-scale
- Vaccine Research Center (VRC, NIH)
- DAIDS, NIH
- IPPOX & P5 (Gates Foundation)
- Sanofi³⁾
- Astellas³⁾

Note: 1) CaFDB: California Food and Drug Branch; 2) VRC: Vaccine Research Center; 3) including QP inspection for EU; 4) QIDP: Qualified Infectious Disease Product.

Advantages in GMP Plasmid Manufacturing

Accumulated experience in manufacturing pDNA as DS and DP for late-phase clinical trials

Extensive knowledge and expertise in fermentation and purification processes

Guaranteed GMP quality via expertise and best practices acquired from Vical

Active investment for reinforcing inhouse capabilities and ensuring cutting-edge systems

Experience in manufacturing DNA Vaccines*	Regulatory Applications*	GMP Inspections*
 CMV vaccine for transplant recipients CMV vaccine as a prophylaxis H5N1 pandemic influenza H1N1 pandemic influenza Anthrax (prophylaxis) HSV-2 (therapeutic) 	 17 INDs Filed 4 Master Files Orphan (#4), Fast Track (#2), QIDP⁴⁾ (#1) 	 CaFDB¹⁾ for commercial-scale Vaccine Research Center (VRC, NIH) DAIDS, NIH IPPOX & P5 (Gates Foundation) Sanofi³⁾ Astellas³⁾

Note: 1) CaFDB: California Food and Drug Branch; 2) VRC: Vaccine Research Center; 3) including QP inspection for EU; 4) QIDP: Qualified Infectious Disease Product

* Experiences in manufacturing, regulatory applications and GMP inspections are based on Vical's experts, who are now employed by Genopis. Genopis acquired Vical's key professionals as well as manufacturing assets and supporting utilities in July 2018.

Case Studies – Plasmid Manufacturing Process

Fermentation Process

Increase of yield, OD₆₀₀ by the change of fermentation time

Purification Process

Agarose gel electrophoresis (AGE): obvious decrease of RNA content through 1st purification step.

M1: Supercoiled DNA Ladder MarkerM2: 1 kb DNA Ladder Marker1: Lysate4: Waste of2: Sample after 1st step5: Waste of3: Waste of salt elutionR: RNA band

4: Waste of salt elution 5: Waste of water elution R: RNA bands QC Release

Sample	Time	Area (%)
OC-Plasmid	20.800	1.62
SC-Plasmid	21.790	94.07
dimer-Plasmid	22.533	4.31

HPCL: After the 2nd purification step, the content of supercoiled plasmid has already reached 95%

Solvent; 2: Open circular plasmid;
 Supercoiled plasmid; 4: Dimer plasmid

CONTENTS

(01) mRNA vaccine against COVID-1	mRNA vac	cine agains	st COVID-1
-----------------------------------	----------	-------------	------------

02 GenScript ProBio Plasmid Platform

GenScript ProBio: Excellent Vaccine Partner

- 3 clinical plasmids mfg., 1 clinical lentivirus mfg.
- 2 IND clearance from NMPA: CAR-T and TCR-T;
- Over 10 CMC projects on going;
- Collaboration with **Merck** to construct GCT platform.

- Strategic Collaboration with various companies
- Collaboration on pre-clinical CMC, IND filing of GCT products;
- GenScript will be prepared for further large-scale production.
- Projects including CAR-T, TCR-T, UCAR-T, etc.;
- Accelerate the industrialization of GCT products;

Successful Collaborations in Various Projects

THANKS

www.genscriptprobio.com

Appendix

The Basics of mRNA Vaccine

Mechanism of mRNA vaccine

Induce the production of antibodies which will bind to potential pathogens.

Delivery of the vaccine into the body.

Encoded sequence is translated by the host cells to produce the antigens.

The antigens stimulate the body's adaptive immune system to produce antibodies against the pathogen.

Production of mRNA vaccine

Produced by *in vitro* reactions with recombinant enzymes, ribonucleotide triphosphates (NTPs) and a **plasmid DNA template**.

mRNA Vaccine Showing Satisfying Performance

• The use of mRNA has several beneficial features over subunit, killed and live attenuated virus, as well as DNA-based vaccines.

Higher delivery rate than DNA vaccine

DNA is supposed to penetrate nucleus to allow transcription to happen, while translation happens in cytoplasm, where is easier to penetrate.

Faster to manufacture, easier to manufacture in large quantities

Produced by high yields of *in vitro* transcription reactions, potential for rapid, inexpensive and scalable manufacturing.

Higher Safety and efficacy

- Manufacturing process does not involve toxic chemicals or cell culture, avoid adventitious viruses;
- 2. Short manufacturing time presents few opportunities to introduce contaminating microorganisms.

