

Antibody Engineering and *in vivo* Pharmacology for Animal Drug Development

As pets increasingly become indispensable family members globally, the rising pet economy drives demand for advanced healthcare solutions. Cancer remains a critical threat, affecting 25% of dogs and 20-30% of cats in their lifetimes, with 6 million annual canine and 3 million feline cancer cases worldwide. Despite this urgency, the veterinary drug market allocates <20% to specialized pet therapeutics, leaving vast unmet needs. Bridging this gap requires innovative biologics tailored to companion animals.

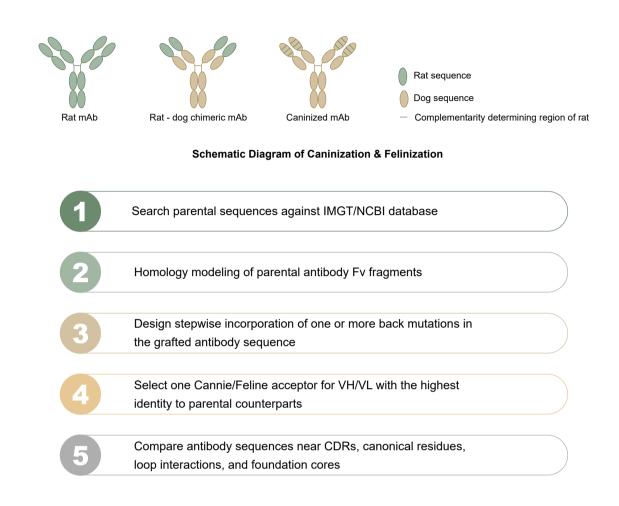
Current cross-species antibody therapies face critical limitations: while 70-80% sequence homology exists between human and pet disease targets, human-derived antibodies rarely achieve functional equivalence in pets. Chimeric antibodies often trigger immunogenicity, compromising efficacy and safety. Species-specific monoclonal antibodies (e.g., fully canine/feline) represent the future of precision pet medicine—yet few platforms address the unique challenges of antibody caninization & felinization and animal disease models. This is where our expertise transforms possibilities into life-saving solutions.

Service Highlights

disease models of dogs and cats

Advanced mutation strategy

- Structural modelling
- Unique precise mutagenesis library (PML) and FASEBA screening technology



Extensive experience in establishing animal models

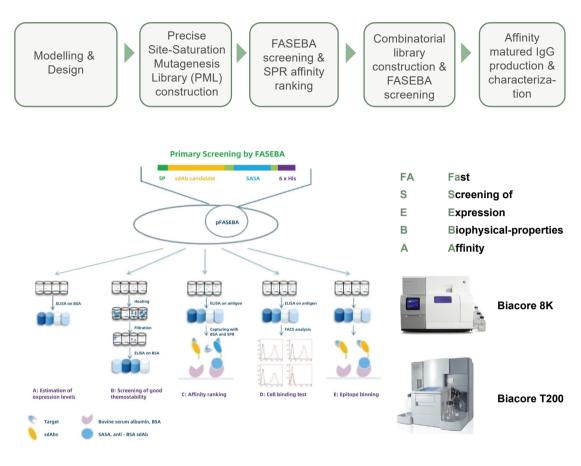
- Multiple ready-to-use induction disease models
- Availability of spontaneous disease animal recruitment for simulating pet clinical trials

Antibody Engineering and in vivo Pharmacology for Animal Drug Development

Antibody Caninization & Felinization

Case Study

Antibody Caninization


Antibody	ka (1/s)	kd (1/s)	KD (1/s)
Chimeric	2.07E+06	3.66E-04	1.77E-10
Variant 1	1.87E+06	3.02E-04	1.62E-10
Variant 2	1.67E+06	3.36E-04	2.01E-10
Variant 3	2.01E+06	4.66E-04	2.32E-10

Antibody Felinization

Antibody	ka (1/s)	kd (1/s)	KD (1/s)
Chimeric	5.35E+05	2.93E-04	5.47E-10
Variant 1	5.09E+05	2.25E-04	4.42E-10
Variant 2	5.01E+05	2.46E-04	4.92E-10
Variant 3	4.48E+05	1.83E-04	4.08E-10

The antibody canonization/felinization projects were successfully delivered, and canonized/felinized antibodies with an affinity comparable to that of chimeric antibodies (10^{-10}) were obtained.

Canine/Feline Antibody Affinity Maturation

FASEBA High-throughput Screening Platform

Case Study

Feline Antibody Affinity Maturation

Antibody	ka (1/s)	kd (1/s)	KD (M)
Canine-WT	1.23E+05	1.10E-03	8.92E-09
Variant 1	2.02E+05	5.23E-05	2.59E-10
Variant 2	6.74E+05	1.87E-05	2.78E-11
Variant 3	3.80E+05	3.80E-05	5.29E-11

Feline Antibody Affinity Maturation

Antibody	ka (1/s)	kd (1/s)	KD (M)
Feline WT	6.49E+04	1.17E-04	1.80E-09
Variant 1	7.20E+04	1.09E-05	1.52E-10
Variant 2	8.43E+04	1.25E-05	1.48E-10
Variant 3	8.87E+04	4.40E-06	4.96E-11

Canine Antibody: The affinity of the canine-derived antibody was successfully increased by **302 times**, from **8*10**⁻⁰⁹ to **2*10**⁻¹¹.

Feline Antibody: The affinity of the feline-derived antibody was successfully increased by 36 times, from 1*10⁻⁰⁹ to 4*10⁻¹¹.

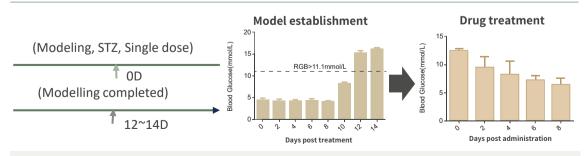
Antibody Engineering and in vivo Pharmacology for Animal Drug Development

in vivo Evaluation

Indication	Modeling method	
Pain	Formalin induction model; Kaolin induction model	
T1DM	Alloxan induction model; STZ induction model	
Calculus	Hyperoxaluria model	
Atopic dermatitis	MC903 induced model; Cytokine- induced pruritus model	
Osteoarthritis	MIA induction model	
Leukopenia	Cyclophosphamide-induced myeloablative model	

Disease models of dogs

Disease models of cats


Indication	Modeling method
T1DM	STZ induction model
T2DM	High fat diet+STZ+operation
FIPV infection	FIPV infection model
Osteoarthritis	MIA induction model
Obesity	Spontaneous obese model

Canine osteoarthritis model

Based on the MIA intra-articular injection, the canine osteoarthritis model was induced and effectively alleviated by drug treatment.

Feline T1DM model

STZ was used to induce T1DM model in cats, and blood glucose was effectively reduced by drug treatment.

Contact us Website: www.probiocdmo.com

Tel : +1-732-885-9188 (US) +86-400-025-8686-3172 (CN) Address : ProBio Inc. Building 9, 311 Pennington Rocky Hill Rd, Pennington, NJ